Skip to main content

Qualifire - LLM Evaluation, Guardrails & Observability

Qualifire provides real-time Agentic evaluations, guardrails and observability for production AI applications.

Key Features:

  • Evaluation - Systematically assess AI behavior to detect hallucinations, jailbreaks, policy breaches, and other vulnerabilities
  • Guardrails - Real-time interventions to prevent risks like brand damage, data leaks, and compliance breaches
  • Observability - Complete tracing and logging for RAG pipelines, chatbots, and AI agents
  • Prompt Management - Centralized prompt management with versioning and no-code studio
tip

Looking for Qualifire Guardrails? Check out the Qualifire Guardrails Integration for real-time content moderation, prompt injection detection, PII checks, and more.

Pre-Requisites

  1. Create an account on Qualifire
  2. Get your API key and webhook URL from the Qualifire dashboard
pip install litellm

Quick Start

Use just 2 lines of code to instantly log your responses across all providers with Qualifire.

litellm.callbacks = ["qualifire_eval"]
import litellm
import os

# Set Qualifire credentials
os.environ["QUALIFIRE_API_KEY"] = "your-qualifire-api-key"
os.environ["QUALIFIRE_WEBHOOK_URL"] = "https://your-qualifire-webhook-url"

# LLM API Keys
os.environ['OPENAI_API_KEY'] = "your-openai-api-key"

# Set qualifire_eval as a callback & LiteLLM will send the data to Qualifire
litellm.callbacks = ["qualifire_eval"]

# OpenAI call
response = litellm.completion(
model="gpt-5",
messages=[
{"role": "user", "content": "Hi 👋 - i'm openai"}
]
)

Using with LiteLLM Proxy

  1. Setup config.yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY

litellm_settings:
callbacks: ["qualifire_eval"]

general_settings:
master_key: "sk-1234"

environment_variables:
QUALIFIRE_API_KEY: "your-qualifire-api-key"
QUALIFIRE_WEBHOOK_URL: "https://app.qualifire.ai/api/v1/webhooks/evaluations"
  1. Start the proxy
litellm --config config.yaml
  1. Test it!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{ "model": "gpt-4o", "messages": [{"role": "user", "content": "Hi 👋 - i'm openai"}]}'

Environment Variables

VariableDescription
QUALIFIRE_API_KEYYour Qualifire API key for authentication
QUALIFIRE_WEBHOOK_URLThe Qualifire webhook endpoint URL from your dashboard

What Gets Logged?

The LiteLLM Standard Logging Payload is sent to your Qualifire endpoint on each successful LLM API call.

This includes:

  • Request messages and parameters
  • Response content and metadata
  • Token usage statistics
  • Latency metrics
  • Model information
  • Cost data

Once data is in Qualifire, you can:

  • Run evaluations to detect hallucinations, toxicity, and policy violations
  • Set up guardrails to block or modify responses in real-time
  • View traces across your entire AI pipeline
  • Track performance and quality metrics over time